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In order to model polymer fluid flows within the framework of continuum mechanics, it is necessary to 
write a theological state equation that establishes a relationship between the stress tensor for a polymer system 
and the velocity-gradient tensor. This can be done either by a phenomenological approach [1], generalizing the 
available experimental data, or by using some model concepts of the structure of polymer materials [2-13]. 
However, both approaches will probably not provide us .with a simple enough rheological constitutive relation 
suitable for a description of various flows of linear polymer solutions and melts. Therefore, the problem 
of construction of a succession of rheologieal constitutive relations taking new and more subtle effects into 
account at each step is of great importance. The success of such a procedure is determined by the selection 
of an initial approximation and by the rules of transition to subsequent approximations. 

At various times the well-known BKZ [1] or Doi-Edwards [2, 4] theological models have been proposed 
as initial approximations. 

In the present work, zeroth approximations of the molecular theory of viscoelasticity [5-9] for given 
small parameters are considered, and the possibility of using these relations as a first approximation in the 
construction of a sequence of rheological constitutive relations is demonstrated. 

Rheo log ica l  C o n s t i t u t i v e  Re la t ion .  The model concepts coming from the simulation of polymer- 
chain motion serve as a basis for different microstructural approaches to the description of the dynamics 
of polymer systems. Here, statement of the equations of dynamics of a macromolecule is not possible 
without some additional assumptions. Two essential assumptions are used most often: 1) a monomolecular 
approximation, in which a single selected macromolecule moving in an effective relaxing medium formed by 
a solvent and by the other macromolecules is considered instead of the entire set of macromolecules in the 
volume; 2) the ability to consider the motion of a selected macromolecule as the motion of N (N >> 1) centers 
of friction (beads) linked together one after another by elastic entropy forces (springs). These assumptions. 
which are only hypothetical, bring us to the equations of dynamics of a macromolecule [5-8]: 
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Here p7 and ~b~ are the generalized coordinate and velocity; m is the mass of a bead; F 7 is the force of 
hydrodynamic entrainment; T/~ is the force of internal viscosity; q~7 is a random force; 2T#Aa is the coefficient 
of elasticity, 7- is the relaxation time of the environment; ( is the coefficient of friction of a bead in a monomeric 
fluid; B~ and E~ are the tensor coefficients of friction of a bead; l.,ij is the velocity-gradient tensor; ~ij is 
the antisymmetrized velocity-gradient tensor; D / D t  is the Jauman's  tensor derivative; the Latin indices i, 
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3 , . . .  = 1, 2, 3 denote the numbers of the spatial Cartesian coordinates, while the Greek indices a,  f l , . . .  = 
1, 2, . . . ,  N denote the numbers of the generalized coordinates in a macromolecule. 

Equations (1) lead us to the following expression for the stress of the polymer system aik in terms of 
the internal thermodynamic  parameters: 

where p is the pressure; n is the number  of the molecules in a unit volume; T is the temperature  in energy 
units; x~' k = 2 ,a~(pgpg) /3 ,  uTk = and averaging is performed over all possible realizations of 
random force ~5~. 

The thermodynamic  variables x~k introduced in (2) characterize the inertial properties of the 
macromolecular coil and can, therefore, be used to determine the anisotropy tensor aik. 

According to (7), we write 

= 6  2(x7  - 

Assuming that  the anisotropy in the considered polymer system is characterized by the size and the 
shape of a macromolecular coil and is, therefore, described by a symmetrical tensor of the second rank aik; 
then, for the coefficients B~ and Ei~- , we have 

Bik = B ~ik -'}- 3fl aik -- ~ oikJ + aeajj~ik , 
(3) 

E ~ =  E@,k  + 3e(a,k ajj --i 

Here B and E are the degrees of increase of ' the friction coefficient ~" for the forces of internal and external 
friction; •, e, w, and u are the phenomenological constants of microanisotropy, which take into account the 
size (ee, u) and the shape (fl, e) of the macromolecular coil in the equation of dynamics of the macromolecule. 
A comparison of (3) with some other possible approaches is carried out in [10]. 

This method of accounting for the induced anisotropy generalizes the expression proposed in [9] for 
the case of large velocity gradients 

B~k = B(Sik -- 3flaik), E i ] =  E(Sik -- 3eaik). 

The internal thermodynamic  variables x~' k and u~' k satisfy the following relaxation equations: 

D a BT R . ,~ ~ 1 1 a 1 

(4) 
D o, 1 1 BT R B ' r R ( (  1 ) R a ,~) 

~ uik + -r u•k + ~ bi~juj% - --r,~ ei~Tikui~ = r 7r ,  x~ - 5 ~il d~k - 2 B q  zil"/tj f~k . 

The auxiliary variables used here have the form 

r~ R = r  r . = r / 2 + C ( B + E ) ,  

1 0 ~  1) (~lj 3~(alj+ -1 flij = 313(ail-t- -~(~ ass'i,) + ~ ( ~ - - 1 ) a s s ' l j ) )  , 

e i j :3~(a i t+ '~(~-- i  1)ass~it)@q + 3,~ (a,,/+ ~ (~- -- 1)ass~tj))-', 
( )_1 

B%R (/3ik + Oeik) c~k = (~ij - ~ij)bjk, b~k = 5ik ra 

Hence, the parameters of the derived rheological model (3) are: BT*, the maximum relaxation time; 
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X = r /2Bv*,  the dimensionless relaxation time; 0 = E / B ,  the degree of internal viscosity;/3, e, ee, and u, the 
coefficients of microanisotropy. The influence of these parameters on the solutions of system of Eqs. (2) and 
(4) was considered in [6-10]. Iv this case, estimates for the parameters g << 1 [5, 9], 0 << 1 [7] and/3 << 1 
were obtained in [8-10]. The parameters X and ~ happened to be responsible for the linear viscoelasticity, 
while the coefficients of microanisotropy manifest themselves in the nonlinear region. 

T h e  Z e r o t h - A p p r o x i m a t i o n  Mode l s .  The written system of equations is rather complex. 2 herefore, 
zeroth- and first- approximation models were formulated earlier in [5], making use of the smallness of 
parameters ~: and ~. The obtained results in this case make it necessary to consider the zeroth-approximation 
models for X and ~ more carefully. In this case u~k = 0, and Eqs. (2) and (4) take the form 

1 

d . 4 ~ l+(ae- /3 )ass ( zo[k -13~  ik) 3/3 ( ( x ; - g l s i j )  +(ze~j ~18kj)aji), 
-~ zTl' - u"zJk - ukjzJl = -B~-~ 2 B r ~  ajk - 

where ass is the trace of the anisotropy tensor aik. The parameters of this system of equations will then be 
Br*,/3, and de. 

The parameter Br* can be determined through the initial shear viscosity 7/o = (~r2/6)nTBr *, and, 
therefore, it becomes possibile to study the influence of the anisotropy parameters/3 and ae on the solutions to 
system of Eqs. (5). Considering the stationary shear flow, when only one component of the tensor of velocity 
gradients, //12, is nonzero, we obtain from (5) the following expressions for the nonzero components of the 
stress tensor 0"ik with third-order accuracy with respect to//12: 

0-11 "~-P  = ~-g(1 - nT(B'r*Ul2) 2, 

rr 2 (24re 4 
0"12 = --~- nT[Br*ul2  -- \1--5-~ /3 

71" 4 
o'22 + p = -- 9---0/3nT(BT*//12)2' 

+ 945"7--~-(,e4rr4- /3)(B~-*u12)3)] 

(6) 

Hence, the parameters a~ and/3 are responsible for the nonlinear properties of system (4), and in the 
case of simple shear, the parameter/3 manifests itself already in the second order with respect to the velocity 

- q o [ 1 -  4zr4 

gradients, but ee only in the third. 
From (6) we find expressions for the viscosimetric functions 

0-11 - -  0 2 2  71"4 _ 71"4 0"12 
tI/1 - -  - -  n T ,  t I /2 _ 0"22 - 0"33 ~ n T ,  7] - - -  

( / ] 1 2 )  2 4 5  ( / / 1 2 )  2 9 0  /112 

The results obtained here differ at ee = 0 from the results in [9] because of a misprint which was the 
fault of the authors. 

In the case of a dumb-bell model (N = 1), system of Eqs. (5) has the form 

0-ik _peSik + 3q0 d 1 + (de - /3 ) I  2 3/3 
= - -  a i k ,  - ~  a ik  - -  u i j a j k  --  u k j a j i  -I- a ik  = ~ "Tik a i j a j k .  ( 7 )  

7-0 TO To 

Here q0 and TO are the initial shear viscosity and relaxation time; I = as~. Hence, under the assumption of 
isotropic relaxation (/3 = 0), we come to the well-known Pokrovsky structural-phenomenological model. If 

= ze, the coefficients in Eq. (7) do not depend on the first invariant of the tensor aik, which corresponds to 
the case studied in [12, 13]. 

N o n l i n e a r  S t a t i o n a r y  Effec ts  w i t h  S imple  S h e a r  a n d  Uniax ia l  E x t e n s i o n .  Considering the 
nonlinear effects in a stationary shear flow, system of Eqs. (7) takes the form 

o ~ VN all=2TNsa12--3/3rN(a~l-t-ai2),  a22=--3~TN(a22-4-a'~2), a12=-~-s-t-'rNsa22--3~7"Na12(a11+a22), (8) 

where TN = 1/(1 + (ee--/3)1); I = all  + a22; s = T0ul2. 
The results of computations of the viscosimetric functions from system of Eqs. (8) are given in Figs. 

1-5. In Figs. 1 and 2, the relation between the stationary shear viscosity r / and the dimensionless velocity of 
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shear s is presented. One can see that  an increase in/3 leads to a decrease in 77, and an increase in ~e (at fixed 
/3) leads to an increase in 77. In this case, the influence of/3 is the more significant (a variation of/3 of from 
0.1 to 0.15 is "compensa ted"  by a variation of ze of from 0.3 to 1). 

In Fig. 3, the flow curve that  represents the relation be tween the shear stress o.12 and the velocity of 
shear is shown. At ~e > fl, ~12 is an ascending function of shear velocity u12, which agrees well with the 
experimental  da ta  from [14]. 

In Fig. 4, the  ratio be tween  the second and the first remainders of the normal  stresses (cr2~-a33)/(ql l  - 
o'22) = ~2/021 is shown. This ratio is negative and small in absolute  value. The  parameter  13 significantly 
influences this ratio, while the  ~e influence is negligible. The parameter  ee also does not influence the coefficient 
of the first remainder  of the normal stresses ~ l ,  which is presented in Fig. 5. 

For s ta t ionary uniaxial  extension, sys tem of Eqs. (7) has the form 

3/3TNsb~l -t- (I -- 2rNs)bn = 2 1 -~ rN, 3~rNsb~2 + (1 + TNs)b22 -= - -5  TN 

[I = ( b l l  -4- 2 b 2 2 ) s ,  s = T 0 / ) l l ,  bii  : a i i / s ] .  

In this case, the behavior  of the polymer  liquid is characterized by a s ta t ionary  viscosity with extension 
A = (crll -- O'22)/U11, the  dependence  of which on the dimensionless velocity of extension s at different values 
of the parameter /3  = ee is given in Fig. 6. One can see that  at high velocities of extension s, the coefficient of 
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viscosity A reaches a stationary value, which is in agreement with the calculations from [3, 12]. 
In Fig. 7, a comparison of the experimental data for the flow curve of a 12% polyisobutilene solution in 

decaline obtained in [14] with calculations by system of Eqs. (8) (solid line) and by the system of first-order- 
approximation equations from [7] (dotted line) is given. 

The presented results show the validity of models (5) and (7) for the description of stationary nonlinear 
effects in linear polymers with simple shear and uniaxial extension. Thus, we can recommend these models as 
initial approximations for construction of a sequence of rheological constitutive relations. At the same time, 
when passing from the general system (2), (4) to the first-order-approximation model, the properties of the 
model can deteriorate. Therefore, the s ta tement  of the first-order-approximation model apparently requires 
an improvement in the initial equations of macromolecule dynamics. 
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